DESCRIPCIÓN

En este espacio se presenta como fuente de información un resumen del Fundamento Teórico de cada práctica, utilizando organizadores didácticos como mapas conceptuales y otros.

También se expone un trabajo realizado por los estudiantes del año lectivo anterior, como una introducción a la utilización del recurso tecnológico la informática, esta informacion esta en forma de presentaciones y el tema es Curiosidades de mi tierra y mapas conceptuales del Generador de Vann de Graff.

Y, un compendio de informes de Óptica, Calor, Electicidad, Mecánica.

CURIOSIDADES de Adrián

¡Tus propias imágenes en una Slideshow para MySpace, Facebook, orkut o tu página web!mostrar todos los imagenes de esta slideshow

jueves, 5 de agosto de 2010

TEMA: CHOQUE SOBRE UNA PARED



CHOQUE SOBRE UNA PARED



TEORÍA:


Tenemos dos tipos e choques

Choques elásticos e inelásticos
La conservación de la cantidad de movimiento encuentra su mayor aplicación en el estudio de la interacción, en las cuales dos o más cuerpos ejercen mutuamente fuerzas muy grandes que duran, sin embargo un intervalo de tiempo muy pequeño.

Dichas fuerzas se denominan fuerzas impulsivas, y aparecen, por ejemplo cuando una pelota de futbol choca con el pie de un jugador, éste es un ejemplo típico de fuerza impulsiva.


Los choques entre dos partículas, por ejemplo, entre dos bolas de billar se acostumbra clasificarlas de la siguiente manera: si las partículas se mueven sobre una misma recta, antes y después de la colisión, decimos que el choque es central o directo. Si esto no ocurre, decimos que la condición es oblicua.

Por otra parte, si la energía cinética de las partículas, antes de la colisión, es igual a la energía cinética total, después de la colisión, decimos que el choque es elástico.

En una condición elástica, la energía cinética se conserva.

En caso contrario la colisión es inelástica.

La energía cinética final podrá ser mayor o menor que el inicial.

Si la energía cinética aumenta, hay forzosamente una fuente de energía que proporciona este aumento, durante la interacción si la energía cinética disminuye puede haber aparición de calor o deformaciones permanentes en los cuerpos que chocan.

Finalmente, si las partículas después de la colisión se mueven con la misma velocidad, tenemos una colisión completamente inelástica, por ejemplo, cuando dos automóviles chocan y continúan adheridos después del choque.

Si la colisión fuere elástica, la conservación de energía cinética nos daría una ecuación más.

Notemos sin embargo que debido a la naturaleza de las fuerzas impulsivas, podemos utilizar la conservación de la cantidad de movimiento, aunque la fuerza externa no sea nula. comience a rodar sin deslizar antes de perder el contacto con el suelo.


  1. Que la pelota comience a deslizar antes de dejar de estar en contacto con el suelo.

Se puede calcular el ángulo de rebote, la velocidad final de la pelota, y su velocidad angular de rotación en términos del ángulo incidente, el coeficiente de restitución y el coeficiente de rozamiento entre la pelota y el suelo.



Las fuerzas que actúan sobre la pelota son: el peso mg, la fuerza normal o reacción del suelo N, y la fuerza de rozamiento Fr=μN. Durante el choque el peso mg es despreciable frente a la fuerza normal N.


Consideremos una pelota de tenis que se deja caer desde un metro de altura, que tiene un coeficiente de restitución de e=0.78 y que el tiempo de contacto de la pelota con el suelo es de Δt=0.005 s. La velocidad de la pelota antes del choque es uy y la velocidad de la pelota después del choque es vy=–e·uy. La aceleración es mucho mayor que la aceleración de la gravedad g=9.8 m/s2 . Como

may=N-mg

Por tanto, el peso mg se puede despreciar frente a la fuerza normal N.

En general, el bastante complicado el análisis del choque de una pelota con el suelo, ya que la pelota modifica en mayor o menor grado su forma esférica durante el choque. Por otra parte, una pelota no es un cuerpo homogéneo, sino una capa esférica delgada hecha de goma en cuyo interior hay aire a presión. Para evitar estas complicaciones, en esta página vamos a estudiar el choque de un disco indeformable con una pared rígida.

Aunque el objetivo de esta página es la de comprobar la constancia del momento angular en la colisión entre un disco y una pared rígida, para comprender este ejemplo en su totalidad, se recomienda estudiar antes el movimiento general de un sólido rígido.

Modelo simple de choque de un disco con una pared rígida
Definimos el
coeficiente de restitución e como
donde v1 y v2 son las velocidades del las partículas después del choque y u1 y u2 las velocidades antes del choque


No hay comentarios:

Publicar un comentario

PREPARATIVOS DE CASA ABIERTA

¡Tus propias imágenes en una Slideshow para MySpace, Facebook, orkut o tu página web!mostrar todos los imagenes de esta slideshow

EXPERIENCIAS CASA ABIERTA

¡Tus propias imágenes en una Slideshow para MySpace, Facebook, orkut o tu página web!mostrar todos los imagenes de esta slideshow